H atoms were included using a riding model with d(C-H) = 0.96 Å and $U_{iso} = 0.08$ Å². Structure solution and refinement used either our locally modified version of the UCLA Crystallographic Package (Strouse, 1981) or the SHELXTL-Plus88 program set (Sheldrick, 1988).

We thank the National Institutes of Health (grant AI 24779) and the National Science Foundation (grant CHE-90-15849) for support of this research. Funds for the purchase of the Siemens R3m/V diffractometer system were made available from the National Science Foundation under grant CHE-85-14495.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: HH1053). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bak, B., Christensen, D., Hansen-Nygaard, L. & Rastrup-Andersen, J. (1961). J. Mol. Spectrosc. 7, 58-63.
- Bak, B., Christensen, D., Rastrup-Andersen, J. & Tannenbaum, E. (1956). J. Chem. Phys. 25, 892–896.
- Balza, F., Lopez, I., Rodriguez, E. & Towers, G. H. N. (1989). Phytochemistry, 28, 3523-3524.
- Freeman, F. (1990). Heterocycles, 31, 701-750.
- Freeman, F., Aregullin, M. & Rodriguez, E. (1993). Rev. Heteroat. Chem. 9, 1-19.
- Freeman, F., Kim, D. S. H. L. & Rodriguez, E. (1989). Sulfur Rep. 9, 207–256.
- Freeman, F., Kim, D. S. H. L. & Rodriguez, E. (1992). J. Org. Chem. 57, 1722–1727.
- Freeman, F., Lu, H. & Rodriguez, E. (1993). Tetrahedron Lett. 34, 1753-1756.
- Gronowitz, S. & Hornfeldt, A. B. (1990). *Thiophene and its Derivatives*, Vol. 44, Part 4, edited by S. Gronowitz, p. 1. New York: Wiley.
- Harshbarger, W. R. & Bauer, S. H. (1970). Acta Cryst. B26, 1010-1020.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Joseph, P. S., Selladurai, S., Kannan, S. & Parthasarathi, V. (1991). Acta Cryst. C47, 674-676.
- Koreeda, M. & Yang, W. (1994). Syn. Lett. pp. 201-203.
- Meester, P., Maldar, N. N., Hosmane, S. N. & Chu, S. S. C. (1986). Acta Cryst. C42, 363-364.
- Rodriguez, E., Aregullin, M., Nishida, T., Uehara, S., Wrangham, R. W., Abramowski, Z., Finlayson, A. J. & Towers, G. H. N. (1985). *Experientia*, 41, 419–420.
- Schroth, W., Billig, F. & Reinhold, G. (1967). Angew. Chem. Int. Ed. Engl. 6, 698-699.
- Schroth, W., Billig, F. & Zschunke, A. (1969). Z. Chem. 9, 184–185.
- Sheldrick, G. M. (1988). SHELXTL-Plus88. Structure Determination Programs. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
- Strouse, C. (1981). UCLA Crystallographic Computing Package. Univ. of California, Los Angeles, California, USA.
- Zschunke, A., Mugge, C., Hintzsche, E. & Schroth, W. (1992). J. Prakt. Chem. 334, 141-146.

Acta Cryst. (1995). C51, 659-661

(1Z,3Z)-1,4-Diphenyl-1,4-bis(*p*-tolylmethylthio)-1,3-butadiene

FILLMORE FREEMAN, HENGYAO LU AND JOSEPH W. ZILLER

Department of Chemistry, University of California, Irvine, California 92717, USA

ELOY RODRIGUEZ

Phytochemistry and Toxicology Laboratory, Department of Developmental and Cell Biology, University of California, Irvine, California 92717, USA

(Received 2 November 1992; accepted 5 July 1994)

Abstract

The crystal structure of (1Z,3Z)-1,4-diphenyl-1,4-bis-(*p*-tolylmethylthio)-1,3-butadiene (1), $C_{32}H_{30}S_2$, is described. Compound (1) has an *s*-trans conformation. The single bond length, C(2)—C(2'), in compound (1) of 1.432 (5) Å is shorter than the C(3)—C(4) single bond (1.48 Å) in 1,3-butadiene and the double-bond length, C(1)—C(2), of 1.350 (3) Å in compound (1) is comparable to that in 1,3butadiene (1.34 Å). The short C—C single and double bonds in (1) may be attributed to delocalization (resonance) over the planar four-atom unit, hybridization changes, the presence of the S atoms, and/or other factors.

Comment

The addition of *p*-tolylmethanethiol to 1,4-diphenyl-1,3-butadiyne may afford (1Z,3Z)-1,4-diphenyl-1,4bis(p-tolylmethylthio)-1,3-butadiene (1), 2-(p-tolyl)-5-phenyl-3-(phenylmethyl)thiophene (Freeman, Lu & Rodriguez, 1993; Freeman, Lu, Zeng & Rodriguez, 1994), or (Z)-1,4-diphenyl-1-(p-tolylmethylthio)but-1-en-3-yne (Zschunke, Mugge, Hintzche & Schroth, 1992) depending on the solvent system and the ratio of reactants. The reaction of thiols with polyalkynes is of interest in the synthesis of 1.2-dithiacyclohexa-3,5-dienes (1,2-dithiins) in general (Freeman, 1990; Freeman, Kim & Rodriguez, 1989, 1992; Koreeda & Yang, 1994) and of the bioactive thiarubrines in particular (Balza, Lopez, Rodriguez & Towers, 1989; Freeman, Aregullin & Rodriguez, 1993; Freeman, Kim & Rodriguez, 1989; Rodriguez, Aregullin, Nishida. Uehara. Wrangham, Abramowski, Finlayson & Towers, 1985; Schroth, Billig & Reinhold, 1967; Schroth, Billig & Zschunke, 1969). In addition, the cycloaddition reactions of substituted dienes are of great synthetic and theoretical interest, and questions concerning the conformation and delocalization of π electrons in 1,3-dienes are topics of considerable discussion and controversy (Bartell, 1978; Dewar & Gleicher, 1965; Fischer & Michl, 1987; Popov & Kogan, 1968; Marias, Sheppard & Stoicheff, 1962; Simmons, 1970; Wiberg, Rosenberg & Rablen, 1991).

CH.

In compound (1) the conformation of the 1,3butadiene moiety is trans-planar. The planes of the two phenyl rings attached to C(1) and C(1') are both tilted 39.7° from the 1,3-butadiene plane. The single bond length, C(2)-C(2'), of 1.432 (5) Å in compound (1) is shorter than the C(3)—C(4) bond (1.48 Å) in 1,3-butadiene and the double-bond length, C(1)—C(2), of 1.350 (3) Å is comparable to that in 1,3-butadiene (1.34 Å). The short C-C single and double bonds in (1) may be attributed to delocalization (resonance) over the planar four-C-atom unit, hybridization changes, the presence of the S atoms, and/or other factors.

Fig. 1. Thermal ellipsoid plot of the molecular structure and atom numbering of (1). The displacement ellipsoids are drawn at the 50% probability level.

Experimental

(1Z,3Z)-1,4-Diphenyl-1,4-bis(p-tolylmethylthio)buta-1,3diene was prepared by the reaction of p-tolylmethanethiol and 1.4-diphenylbuta-1,3-divne in ethanolic potassium hydroxide. Recrystallization was from 1:1 benzene/ethyl ethanoate.

Mo $K\alpha$ radiation

Cell parameters from 32

 $0.44 \times 0.30 \times 0.13$ mm

 $\lambda = 0.71073 \text{ Å}$

reflections $\theta = 11.0 - 15.0^{\circ}$

 $\mu = 0.213 \text{ mm}^{-1}$

T = 158 K

Colourless

Plate

Crystal data

 $C_{32}H_{30}S_2$ $M_r = 478.7$ Triclinic $P\overline{1}$ a = 7.3431 (13) Åb = 7.6239 (17) Å c = 12.2209 (20) Å $\alpha = 78.411 (16)^{\circ}$ $\beta = 78.381 (14)^{\circ}$ $\gamma = 79.439 (15)^{\circ}$ V = 649.2 (2) Å³ Z = 1 $D_{\rm r} = 1.224 {\rm Mg m}^{-3}$

Siemens R3m/V diffractome-

 $R_{\rm int} = 0.0105$ $\theta_{\rm max} = 22.5^{\circ}$ ter $h = 0 \rightarrow 7$ θ -2 θ scans $k = -8 \rightarrow 8$ Absorption correction: none $l = -12 \rightarrow 13$ 1868 measured reflections 2 standard reflections 1634 independent reflections monitored every 98 1506 observed reflections reflections $[F > 3.0\sigma(F)]$ intensity variation: none

Refinement

S(1) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(13)

C(14)

C(15)

C(16)

Refinement on
$$F^2$$
 $w = 1/[\sigma^2(F) + 0.0005F^2]$ $R = 0.043$ $(\Delta/\sigma)_{max} = 0.001$ $wR = 0.049$ $\Delta\rho_{max} = 0.24$ e Å⁻³ $S = 1.42$ $\Delta\rho_{min} = -0.21$ e Å⁻³1506 reflectionsAtomic scattering factors214 parametersfrom International TablesAll H-atom parametersfor X-ray Crystallographyrefined(1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

x	у	Z	U_{eq}
0.2962(1)	0.7042(1)	0.4776 (1)	0.0274 (3)
0.2440 (3)	0.9388 (3)	0.4228 (2)	0.0228 (10)
0.0778 (4)	1.0342 (4)	0.4615 (2)	0.0257 (11)
0.3938 (4)	1.0257 (4)	0.3414 (2)	0.0249 (10)
0.3486 (4)	1.1654 (4)	0.2534 (2)	0.0300 (11)
0.4860 (4)	1.2530 (4)	0.1806 (3)	0.0352 (12)
0.6729 (5)	1.2030 (4)	0.1943 (3)	0.0380 (13)
0.7219 (4)	1.0610 (5)	0.2791 (3)	0.0365 (12)
0.5840 (4)	0.9733 (4)	0.3512 (3)	0.0298 (11)
0.3678 (4)	0.6136 (4)	0.3454 (3)	0.0293 (11)
0.2165 (4)	0.6468 (3)	0.2741 (2)	0.0247 (10)
0.0557 (4)	0.5642 (4)	0.3104 (3)	0.0280(11)
-0.0786 (4)	0.5861 (4)	0.2415 (3)	0.0309 (11)
-0.0588 (4)	0.6940 (4)	0.1353 (2)	0.0316 (11)
0.0985 (4)	0.7809 (4)	0.1005 (3)	0.0327 (11)
0.2342 (4)	0.7584 (4)	0.1681 (2)	0.0295 (11)
-0.2042 (6)	0.7186 (6)	0.0594 (3)	0.0513 (16)

S(1)—C(1)	1.779 (3)	S(1)—C(9)	1.827 (3)
C(1)—C(2)	1.350 (3)	C(1)—C(3)	1.483 (3)
C(2)—C(2')	1.432 (5)	C(3)—C(4)	1.398 (4)
C(3)—C(8)	1.403 (4)	C(4)—C(5)	1.379 (4)
C(5)—C(6)	1.389 (5)	C(6)—C(7)	1.390 (4)
C(7)—C(8)	1.379 (4)	C(9)—C(10)	1.502 (4)
C(10)—C(11)	1.391 (4)	C(10)-C(15)	1.396 (4)
C(11)C(12)	1.388 (5)	C(12)-C(13)	1.386 (4)
C(13)-C(14)	1.387 (4)	C(13)-C(16)	1.513 (6)
C(14)-C(15)	1.384 (5)		
C(1)—S(1)—C(9)	100.1 (1)	S(1)—C(1)—C(2)	120.0 (2)
S(1)-C(1)-C(3)	117.7 (2)	C(2) - C(1) - C(3)	122.1 (2)
C(1) - C(2) - C(2')	127.3 (3)	C(1) - C(3) - C(4)	120.7 (2)
C(1)-C(3)-C(8)	121.4 (2)	C(4)-C(3)-C(8)	117.9 (2)
C(3)-C(4)-C(5)	121.1 (3)	C(4)C(5)C(6)	120.0 (3)
C(5)-C(6)-C(7)	120.0 (3)	C(6)-C(7)-C(8)	119.7 (3)
C(3)—C(8)—C(7)	121.2 (3)	S(1)-C(9)-C(10)	114.1 (2)
C(9)-C(10)-C(11)	121.1 (2)	C(9)-C(10)-C(15)	121.1 (3)
C(11)-C(10)-C(15)	117.7 (3)	C(10) - C(11) - C(12)	121.1 (3)
C(11)—C(12)—C(13)	121.1 (3)	C(12)-C(13)-C(14)	117.9 (3)
C(12)-C(13)-C(16)	121.5 (3)	C(14)-C(13)-C(16)	120.6 (3)
C(13)C(14)C(15)	121.5 (3)	C(10)-C(15)-C(14)	120.7 (3)

Table 2. Selected geometric parameters (Å, °)

The structure was solved using direct methods (SHELXTL-Plus88; Sheldrick, 1988) and the UCLA Crystallographic Package (Strouse, 1981). H atoms were located and included with isotropic temperature factors.

We thank the National Institutes of Health (AI 24779) and the National Scince Foundation (grant CHE-90-15849) for support of this research. Funds for the purchase of the Siemens R3m/V diffractometer system were made available from the National Science Foundation under grant CHE-85-14495.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and bond distances involving H atoms have been deposited with the IUCr (Reference: HH1054). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Balza, F., Lopez, I., Rodriguez, E. & Towers, G. H. N. (1989). Phytochemistry, 28, 3523-3524.
- Bartell, L. S. (1978). Tetrahedron, 34, 2891-2892.
- Dewar, M. J. S. & Gleicher, G. J. (1965). J. Am. Chem. Soc. 87, 692-696.
- Fischer, J. J. & Michl, J. (1987). J. Am. Chem. Soc. 109, 1056-1059.
- Freeman, F. (1990). Heterocycles, 31, 701-750.
- Freeman, F., Aregullin, M. & Rodriguez, E. (1993). Rev. Heteroat. Chem. 9, 1-19.
- Freeman, F., Kim, D. S. H. L. & Rodriguez, E. (1989). Sulfur Rep. 9, 207-256.
- Freeman, F., Kim, D. S. H. L. & Rodriguez, E. (1992). J. Org. Chem. 57, 1722–1727.
- Freeman, F., Lu, H. & Rodriguez, E. (1993). Tetrahedron Lett. 34, 1753-1756.
- Freeman, F., Lu, H., Zeng, Q. & Rodriguez, E. (1994). J. Org. Chem. 59, 4350–4354.
- Koreeda, M. & Yang, W. (1994). Syn. Lett. pp. 201-203.
- Marais, D. J., Sheppard, N. & Stoicheff, B. P. (1962). Tetrahedron, 17, 163-169.
- Popov, E. M. & Kogan, G. A. (1968). Russ. Chem. Rev. 37, 119-141.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved

- Rodriguez, E., Aregullin, M., Nishida, T., Uehara, S., Wrangham, R. W., Abramowski, Z., Finlayson, A. J. & Towers, G. H. N. (1985). *Experientia*, **41**, 419–420.
- Schroth, W., Billig, F. & Reinhold, G. (1967). Angew. Chem. Int. Ed. Engl. 6, 698-699.
- Schroth, W., Billig, F. & Zschunke, A. (1969). Z. Chem. 9, 184-185.
- Sheldrick, G. M. (1988). SHELXTL-Plus88. Structure Determination Programs. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
- Simmons, H. E. (1970). Prog. Phys. Org. Chem. 7, 1-50.
- Strouse, C. (1981). UCLA Crystallographic Computing Package. Univ. of California, Los Angeles, USA.
- Wiberg, K. B., Rosenberg, R. E. & Rablen, P. R. (1991). J. Am. Chem. Soc. 113, 2890-2898.
- Zschunke, A., Mugge, C., Hintzche, E. & Schroth, W. (1992). J. Prakt. Chem. 334, 141-146.

Acta Cryst. (1995). C51, 661-663

Bis(tert-butylsulfonyl) Disulfide

FILLMORE FREEMAN, XIAO-BO MA AND JOSEPH W. ZILLER

Department of Chemistry, University of California, Irvine, California 92717, USA

ROBERT I. LIN

Nutrition International Company, 6 Silverfern Drive, Irvine, California 92715, USA

(Received 4 June 1992; accepted 5 July 1994)

Abstract

The crystal structure of bis(*tert*-butylsulfonyl) disulfide, $C_8H_{18}O_4S_4$, is described and compared with oxides of other polysulfanes. The SO₂—S bond distance is longer than that of S—S and there is considerable double-bond character along the S—O bonds.

Comment

The oxidation of polysulfanes and the structures of the resulting oxides are of considerable interest (Block & Bayer, 1990; Block & Weidner, 1966; Folkins & Harpp, 1993; Freeman, 1984; Freeman & Angeletakis, 1983; Freeman, Ma & Lin, 1993; Oae, 1991). Although the crystal structures of sulfonyl derivatives of disulfides (thiosulfonates; Dawson, Mathieson & Robertson, 1948; Wahl, Bordner, Harpp & Gleason, 1973), two trisulfides [bis(arylsulfonyl) sulfides; Mathieson & Robertson, 1949], one tetrasulfide [bis(methylsulfonyl) disulfide; Sörum & Foss, 1949; Sörum, 1953], and one pentasulfide [bis(arylsulfonyl) trisulfide; Dawson, Mathieson & Robertson, 1948] have been determined, there is a